Cyclosporin A increases hypoxia and free radical production in rat kidneys: prevention by dietary glycine.

نویسندگان

  • Zhi Zhong
  • Gavin E Arteel
  • Henry D Connor
  • Ming Yin
  • Moritz V Frankenberg
  • Robert F Stachlewitz
  • James A Raleigh
  • Ronald P Mason
  • Ronald G Thurman
چکیده

The major side effect of cyclosporin A is severe nephrotoxicity. It is likely that cyclosporin A causes vasoconstriction leading to hypoxia-reperfusion injury; therefore, these experiments were designed to attempt to obtain physical evidence for hypoxia and free radical production in kidney following cyclosporin A. Rats were treated daily with cyclosporin A (25 mg/kg ig) for 5 days, and pimonidazole, a hypoxia marker, was injected 2 h after the last dose of cyclosporin A. A dose of α-(4-pyridyl-1-oxide)- N- tert-butylnitrone (4-POBN) was injected 3 h after cyclosporin A to trap free radicals. Cyclosporin A doubled serum creatinine and decreased glomerular filtration rates by 65% as expected. Pimonidazole adduct binding in the kidney was increased nearly threefold by cyclosporin A, providing physical evidence for tissue hypoxia. Moreover, cyclosporin A increased 4-POBN/radical adducts nearly sixfold in the urine but did not alter levels in the serum. Glycine, which causes vasodilatation and prevents cyclosporin A toxicity, minimized hypoxia and blocked free radical production; however, it did not alter cyclosporin A blood levels. These results demonstrate for the first time that cyclosporin A causes hypoxia and increases production of a new free radical species exclusively in the kidney. Therefore, it is concluded that cyclosporin A causes renal injury by mechanisms involving hypoxia-reoxygenation, effects which can be prevented effectively by dietary glycine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dietary glycine and renal denervation prevents cyclosporin A-induced hydroxyl radical production in rat kidney.

Cyclosporin A (CsA) nephrotoxicity is associated with renal hypoxia and increases in free radicals in the urine. This study was designed to elucidate the mechanism of radical production caused by CsA. Pretreatment of rats with CsA (25 mg/kg, i.g.) for 5 days decreased glomerular filtration rates by 65%, an effect largely prevented by both dietary glycine (5%) or renal denervation. CsA dissolved...

متن کامل

Cyclosporin A causes a hypermetabolic state and hypoxia in the liver: prevention by dietary glycine.

Acute cyclosporin A (CsA) treatment inhibits mitochondrial respiration, yet effects of chronic treatment remain unclear. Accordingly, the effects of chronic CsA on oxygen metabolism in perfused rat liver and isolated mitochondria were investigated. Basal rates of oxygen uptake of around 120 micromol/g/h in isolated perfused livers from vehicle-treated controls were elevated about 1.6-fold by ch...

متن کامل

Protective effect of glycine on renal injury induced by ischemia-reperfusion in vivo.

Although glycine prevents renal tubular cell injury in vitro, its effect in vivo is not clear. The purpose of this study was to investigate whether a bolus injection of glycine given before reperfusion plus continuous dietary supplementation afterward would reduce renal injury caused by ischemia-reperfusion. Female Sprague-Dawley rats received a semisynthetic powdered diet containing 5% glycine...

متن کامل

Role of oxygen and nitrogen free radicals in diabetes-induced atherosclerosis and effects of exercise on it

Free radical can be defined as a molecule or molecular fragments containing unpaired electron in the outer orbital, which react with nearby molecules to get stability. There are two types of them in the body: oxygen free radicals and nitrogen free radicals. Our body has an antioxidant defense system which prevents accumulation of these radicals. There is a balance between free radical produc...

متن کامل

Development of a Method for measuring Reactive Oxygen Radicals Levels In Vitro and Study the Effects of Vitamin C and E on Radical Production Reaction

Background: Free radicals and reactive oxygen species(ROS) are the most important factors in formation of oxidative stress reaction. Now, radical damage has been suggested to contribute to a wide variety of diseases such as Alzheimer, atherosclerosis and cancer. Transition metal ions in the presence of the various biomolecules produce these active compounds. The aim of this study is introducing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 275 4  شماره 

صفحات  -

تاریخ انتشار 1998